RadiumBEFT: Deterministic Byzantine Fault Tolerance with Instant
Finality

Radium Labs

Abstract

RadiumBFT is a deterministic consensus protocol that provides instant finality without
forks or rollbacks. Each block is committed in a single proposal-vote—proof pipeline, enforced by
quorum intersection guarantees. RadiumBFT integrates a verifiable slot pacemaker, adaptive
timing, and a hint-based gossip layer, achieving one-second block intervals with throughput
above 16,000 objects per second. This white paper presents the protocol, algorithms, message
flow, state machine, and correctness arguments (safety and liveness).

1 Introduction

Classical BFT protocols like PBFT provide safety but incur high message complexity. HotStuff
improves responsiveness but requires multi-phase commits before finality. RadiumBFT advances
the state of the art by requiring conflict resolution before commitment, resulting in deterministic
(instant) finality. Applications include high-value settlement, satellite/LEO-based ledgers, and
geographically topology-aware blockchains.

2 System Model

e Nodes: A fixed set of n delegates.
e Faults: Up to f < |(n —1)/3]| Byzantine nodes.
e Communication: Authenticated, partially synchronous.

e Quorum: Decisions require weighted supermajority > 7 where 7 € (1/2,1]; typically 7 >
2/3.

3 Core Concepts

e Round: Identified by (indez, sequence) = (i,s). The block proposed targets i+1.
e Leader Schedule: Deterministic, round-robin with window size w, mapping (i, s) — LeaderFor(i, s).
e Proposal: Leaders block candidate for i+1 (extends the committed block at).

e Proof: A leader-produced object for round (i, s) that contains the aggregated vote objects
collected for the same proposal until the supermajority threshold 7 is reached. The proof acts
as a certificate by inclusion of votes (not a separate quorum-certificate type).

e Instant Finality: A block is final once its proof is formed and validated; no rollback.

e Slot Pacemaker: A deterministic, verifiable mechanism replacing timers; slots regulate the
pace of proposals and ensure all nodes advance consistently.

4 Algorithms

Algorithm 1: Leader Proposal

Input: Current round R = (i, s), parent block B;
Output: Broadcast proposal

B <+ CREATEBLOCK(B;);

P + (B, R,signer = LeaderFor(i, s));
BROADCAST(PROPOSAL, P);

Algorithm 2: Replica Handling Proposal
Input: Proposal P = (B, R = (i, s), signer)
if LeaderFor(i,s) = signer and VALID(P) and SAFETOVOTE(R) then
V « (type=proposal, hash = B.hash, R, signer=self, weight = wgef);
L SENDVOTE(V, LeaderFor(i, s));

Algorithm 3: Vote Aggregation and Proof Formation (at leader for (i, s))
Input: Vote V for round R = (i, s)
Add V to VoteSet[R]; Weight[R] «— Weight[R] + V.weight;
if Weight[R] > T then
PF <+ (round = R, votes = VoteSet[R], signer = LeaderFor(i, s));
L BroapcasT(PrROOF, PF);

Algorithm 4: Replica Handling Proof
Input: Proof PF for round R = (i, s) containing aggregated vote objects
if LeaderFor(i,s) = PF.signer and VALID(PF) and SAFETOVOTE(R) then
V «+ (type=proof, hash = PF.digest, R, signer=self, weight = wgc¢);
L Broapcast(V);

Algorithm 5: Replica Handling Proof and Commit
Input: Proof PF for round R = (3, s)
if LeaderFor(i,s) = PF.signer and HAVEPROPOSAL(R) then
| ComMmiIT(R); RESETSTATE(i+1);

Algorithm 6: Timeout and Sequence Advancement

Input: Current round R = (i, s)
OnTimeout:;

Vi < (type=timeout, R, signer=self, weight = wge1f); BROADCAST(V});
OnSuperMajority Timeout:;

ADVANCESEQUENCE(s+1);

5 Message Flow

5.1 Normal Case

Leader Replicas
PrOPOSAL (B, R) '

3
>

VOTE (B.hash, R)

A

PROOF (aggregated VOTE objects, R)

Y.

VOTE (PROOF receipt, R)

A

Upon valid PROOF (containing vote objects
to supermagority) and final VOTE, repli-
cas locally commit for round R and advance.

5.2 Timeout / Recovery
Replica Other Replicas

TIMEOUTVOTE (R) !

31
>

TIMEOUTVOTES

A

If supermajority timeout votes are observed
for (i,s), nodes advance to s+1 (new leader).

6 State Machine

timeout

PROPOSAL

advance round

7 Slots as Pacemaker

Traditional BFT protocols rely on timers to regulate progress, but timers are vulnerable to drift
and cannot be independently verified. RadiumBFT integrates slots as a verifiable pacemaker
mechanism. Slots are core to the protocol, ensuring all nodes advance rounds in deterministic
synchrony.

7.1 Slot Structure

A slot consists of a fixed sequence of M = 101 slot entries. Each entry contains:
e An index (contiguous counter across the slot),
e A difficulty value,
e A digest prefix, the first4(H) of a hash derived from the previous digest.

Entries form a chain: each digest is computed by hashing the previous digest with the configured
difficulty. This makes the slot sequence deterministic and publicly verifiable.

7.2 Slot Algorithms

Algorithm 7: GenerateSlot
Input: Previous digest Dpyey, difficulty d, length M = 101
Output: Slot entries E
cur <— Dprey; E [];
for k< 1 to M do
H < HASHDIGESTTODIGEST(cur, d);
E + EU{(k,d,first4(H))};
cur < H,;

return F

Algorithm 8: VerifySlot
Input: Optional previous digest Dy ey; slot entries E
foreach checkpoint entry e in E do
H < HASHDIGESTTODIGEST(e.prev, e.di f ficulty);

if first4(H) # e.digest_prefiz then
| return false

return {rue

8 Integrating Slots, Blocks, and Proposals
This section ties together the on-chain data path used by RadiumBFT leaders:
Generate Slot — Build Block (embed slot) — Generate Proposal.

8.1 Data Path and Responsibilities

e Slot: verifiable pacemaker proof for round R = (i,s); leader computes M =101 entries at
difficulty d, signs the slot.

e Block: targets height i+1, embeds the full slot (entries, signer, signature, previous-slot di-
gest).

e Leader Proposal: Includes the block and the round metadata; proposal is signed by the
leader.

The verification stack at replicas is strictly layered:
VERIFYPROPOSALSIG A VERIFYBLOCK A VERIFYEMBEDDEDSLOT
Only after all three pass does a replica consider the proposal valid and apply SAFETOVOTE for R.

8.2 Encoding

The leader proposal encodes the Round (i, s), the block (which itself contains the serialized slot),
then signer and signature.

8.3 Pseudocode

Algorithm 9: BuildBlockWithEmbeddedSlot

Input: Parent block Bj;, previous-slot digest Dflflt, difficulty d, length M =101
Output: Block B for height i+1 containing slot S

S + GENERATESLOT(D3", d, M);

B < ASSEMBLEBLOCK(B;, S, txs, metadata);

return B

Algorithm 10: LeaderProposalWithSlot
Input: Round R = (i, s), keypair k, parent B;, Dflflt, difficulty d
Output: Signed proposal P of type block_slot
B + BUILDBLOCKWITHEMBEDDEDSLOT(B;, Dfl_"lt, d);
P < (round=R,block=DB, signer=Fk.pub);
SIGN(P, k);
BROADCAST(PROPOSAL, P);

Algorithm 11: ReplicaValidateProposal
Input: Proposal P = (type, R = (i,), B)
if VERIFYSIGNATURE(P) = false then

| return reject

if VERIFYBLOCK(B) = false then
| return reject

if VERIFYSLOT (B.slot)=false then
| return reject

if LeaderFor(i,s) # P.signer then
| return reject

if SAFETOVOTE(R) then

| SENDVOTE(V, LeaderFor(R))

8.4 Sequence View (clean rendering)

Leader Replicas
PROPOSAL (type = block_slot, B+slot, R) '

>

VOTE (B.hash, R)

PROOF (Votes, R)

VOTE (Proof, R)

Leader: GENERATESLOT—BUILDBLOCK—SIGNPROPOSAL

Replicas: VERIFYSIGAVERIFYBLOCKAVERIFYSLOTASAFETOVOTE

1
1
L
1
1
1
1
1
1
1
1
I
1
1
1
<
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

8.5 Correctness Linkage

Embedding the slot inside the block makes the pacemaker first-class in consensus: (i) leaders
cannot issue a proposal without a verifiable slot, (ii) replicas can deterministically validate the
delay before casting votes, and (iii) the commitment pipeline (Proposal — Vote — Proof — Vote)
remains unchanged while being paced by a cryptographic, non-drift mechanism. This preserves
instant finality and quorum-intersection safety while replacing fragile timing assumptions.

8.6 Generation and Verification

Leaders must generate a full slot before they are eligible to issue a proposal:
1. Start from the digest of the previous slot.
2. Iteratively compute M entries using the difficulty.
3. Produce the final digest and sign the slot.

Replicas verify only the checkpoints (first and last entries by default), recomputing the expected
digest and comparing against the stored prefix. This reduces verification cost while preserving
security.

8.7 Dynamic Difficulty

The system dynamically adjusts slot difficulty to target a desired interval (e.g., ~500ms). Overhead
such as block assembly and gossip delay is measured locally; difficulty is scaled so that the effective
slot duration remains aligned. This ensures fairness and pacing across heterogeneous hardware and
network conditions.

8.8 Role in Consensus

Slots serve as the pacemaker of RadiumBFT:

e Leaders cannot propose before completing the slot, preventing premature advancement.
e Replicas can independently verify that proposals are correctly delayed.

e All nodes consume the same amount of computational work per round, ensuring synchronized
pace.

Thus slots replace fragile timers with a deterministic, cryptographically enforced mechanism that
underpins the liveness and consistency of RadiumBFT.

Algorithm 12: UpdateDynamicDifficulty
Input: Fixed difficulty dy;,; overhead over; target interval T'

if over > T then

L return I
T—over .

dayn < dfiz - ——p;
return max(1, [dgy,])

9 Correctness

We establish safety (no two conflicting commits at the same height) and liveness (eventual commit)
under the system model in Section 2 and the protocol rules in Sections 3 and 7.

9.1 Preliminaries and Validity Predicates

Let n be the number of delegates, each with voting weight w; > 0 normalized so that) jwj =1
A quorum is any set of votes whose total weight is at least 7 with % <7 <1 (typically 7 > 2/3).
We assume at most f < [(n —1)/3| Byzantine nodes; the remainder are honest.

A round is R = (i,s), where the target commit height is i4+1 and s is the leader sequence for
height i. A proposal P for R contains a block B that extends height i, and embeds a slot that
serves as a verifiable pacemaker proof for R.

Proof validity. A proof PF for round R is an object produced by the scheduled leader ¢ =
LeaderFor(i, s) that contains a multiset of vote objects

PF.votes = {V1,..., Vi, },

such that:
1. (Same round) V& : Vi.round = R.
2. (Same value) VEk : Vj,.hash = Hp where Hp is the hash of the same proposal block B.
3. (Distinct signers) Signers are unique across the included votes.
4. (Threshold)), Vi .weight > 7.
5. (Leader signature) PF is signed by ¢ and ¢ = LeaderFor(i, s).

We write VALIDPROOF(PF, R, B) when all conditions hold.

Local voting rule. FEach honest replica maintains a variable LastVoted. A replica may cast at
most one vote per round and only if SAFETOVOTE(R) holds, where SAFETOVOTE(R) requires: (i)
the local round equals R, (ii) the received proposal for R is valid, including VERIFYPROPOSALSIG A
VERIFYBLOCK A VERIFYSLOT, and (iii) R > LastVoted in lexicographic order on (i, s).

Commit rule. Upon receiving PF with VALIDPROOF(PF, R, B) and having cached the matching
proposal P = (B, R), an honest replica commits B at height i+1 and advances its local state to
height i+1.

Pacemaker neutrality. Slots gate proposal eligibility (leaders must embed a valid slot) and are
independently verifiable by replicas. Slot difficulty and verification checkpoints affect performance
only, not the validity predicates above.

9.2 Invariants

Lemma 1 (Quorum intersection). Let Q1,Q2 be two quorums each with weight at least T > %
Then wt(Q1NQ2) > 27— 1> 0.

Proof sketch. wt(Q1 N Q2) = wt(Q1) + wt(Q2) — wt(Q1 U Q2) > 27 — 1. O

Lemma 2 (Vote monotonicity). An honest replica casts at most one vote per round R and never
votes for two different blocks in the same round or height.

Proof sketch. By the local rule, a vote is permitted only when SAFETOVOTE(R) holds and R >
LastVoted; upon voting, LastVoted <— R. Thus no second vote in the same round is possible, and
value checks tie the vote to one block. O

Lemma 3 (Proof soundness). If VALIDPROOF(PF, R, B) holds, then at least (T —(1—7)) =27 —1
of the weight in PF must be honest (under the worst case that all non-honest weight is (1 —7)).

Proof sketch. Threshold is > 7, at most (1 — 7) can be Byzantine, so honest weight in the proof is
>7—(1-7)=27r—-1>0. .

9.3 Safety

Theorem 1 (At most one commit per height). No two conflicting blocks B # B’ at the same height
i+1 can both be committed by honest replicas.

Proof sketch. Suppose for contradiction that both B and B’ are committed at height i+1 via valid
proofs PF for round R = (i,s) and PF’ for round R’ = (4, s'), respectively. Each proof contains a
quorum of votes for its value. By Lemma 1, the two quorums intersect with positive weight. By
Lemma 2, an honest voter cannot vote for two different blocks at the same height and compatible
round order. Thus the intersection cannot contain honest weight for both B and B’, contradicting
Lemma 3. Hence only one block can be committed at height i+41. O

Corollary 1 (Instant finality). Once a block B at height i+1 is committed under the commit rule,
it cannot be reverted; there is no alternate committed history at that height.

9.4 Liveness

We assume partial synchrony: there exists a (possibly unknown) GST after which message delays
are bounded by A, and the network remains connected among honest replicas. We also assume a
fair leader schedule: for any fixed height 7, an honest leader appears infinitely often in the sequence
s=0,1,2,....

Lemma 4 (Round alignment via slots). If all honest replicas verify the same embedded slot for
round R = (i,s), then their local view of R is aligned (up to message delay), independent of local
wall-clock timers.

Proof sketch. Slot verification is deterministic: each replica checks the same entry chain (with
identical inputs: previous slot digest, length, and difficulty). Therefore acceptance or rejection of
Rs slot is identical across honest replicas, producing the same eligibility barrier for proposals and
the same logical round. O

Lemma 5 (Progress across faulty leaders). If a round R = (i,s) fails to produce a valid proof,
honest replicas eventually move to some R’ = (i,s") with s’ > s.

Proof sketch. Post-GST, either (a) the scheduled leader is faulty or partitioned and no valid proof
forms, in which case the timeout mechanism yields supermajority timeout votes to advance the
sequence; or (b) the leader is honest but cannot gather a quorum due to transient delays, in which
case the same mechanism triggers. Timeouts are independent of slots and do not affect slot validity;
they only advance the leader sequence. O

Theorem 2 (Liveness). Under partial synchrony and a fair leader schedule, RadiumBFT eventually
commits a block at height i+1.

Proof sketch. After GST, by Lemma 5 the system advances through sequences until an honest leader
¢ = LeaderFor(i, s*) is selected. By Lemma 4, honest replicas are aligned on round R* = (i, s*)
via slot verification. The honest leader proposes a valid block with an embedded valid slot; honest
replicas validate and vote once (Lemma 2). The leader aggregates votes to weight > 7 and issues
a valid proof (Lemma 3); replicas commit by the commit rule. Thus the protocol makes progress
to height i+1. O

9.5 Neutrality of Performance Parameters

Lemma 6 (Safety independence). Safety does not depend on slot difficulty, the number of slot
checkpoints verified, or the adaptive difficulty heuristic.

Proof sketch. These parameters influence when a leader becomes eligible to propose and the verifi-
cation cost, but not the vote monotonicity, quorum threshold, or proof validity predicates used in
the safety proof. O

Summary. Safety follows from vote monotonicity and quorum intersection with proofs defined
as aggregations of vote objects. Liveness follows from partial synchrony, fair leader rotation, deter-
ministic round alignment via slots, and sequence advancement across faulty leaders. Instant finality
is a direct consequence of the commit rule and the impossibility of two conflicting commits at the
same height.

10 Performance

Throughput metric. We report throughput in objects per second (OPS), where an “object” is
the atomic unit executed by Radiums runtime. A transaction may carry multiple objects; hence
TPS can be misleading. OPS measures executed work directly and is the primary metric we use in
this paper.

11 Related Work

PBFT [1] introduced the classical three-phase protocol (pre-prepare, prepare, commit) proving that
safety and liveness are achievable in partially synchronous networks with f < (n —1)/3 Byzantine
replicas, albeit at O(n?) per round.

Tendermint [2] adapted BFT consensus to blockchains with rotating leaders and height-based
rounds (pre-vote, pre-commit). It achieves deterministic finality but often incurs extra phase
changes under failures.

HotStuff [3] linearizes BFT with pipelined chained quorum certificates; it reaches finality after
observing a three-deep chain of QCs. RadiumBFT pursues a single proposal-vote—proof pipeline
while preserving quorum intersection safety and providing instant finality.

12 Conclusion

RadiumBFT achieves deterministic finality with minimal phases, enabling high-throughput, forkless
blockchains. Its topology-aware design and IPv6 optimizations make it suitable for terrestrial and
space-based deployments alike. Future work includes formalization of weighted-quorum thresholds
in adversarial network partitions and mechanized verification.

References

[1] Castro, M., & Liskov, B. (1999). Practical Byzantine Fault Tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation (OSDI).

[2] Buchman, E. (2016). Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. Masters
thesis, University of Guelph.

[3] Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., & Abraham, 1. (2019). HotStuff: BFT
Consensus with Linearity and Responsiveness. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODC).

10

